Acquisition and reversal of visual discrimination learning in APPSwDI/Nos2−/− (CVN) mice
نویسندگان
چکیده
Studies of cognitive behavior in rodent models of Alzheimer's disease (AD) are the mainstay of academic and industrial efforts to find effective treatments for this disorder. However, in the majority of such studies, the nature of rodent behavioral tests is considerably different from the setting associated with cognitive assessments of individuals with AD. The recently developed touchscreen technique provides a more translational way of rodent cognitive testing because the stimulus (images in different locations on the screen) and reaction (touch) are similar to those employed in human test routines, such as the Cambridge Neuropsychological Test Automated Battery. Here, we used Visual Discrimination and Reversal of Visual Discrimination touchscreen tasks to assess cognitive performance of APPSwDI/Nos2-/- (CVN) mice, which express mutated human APP and have a homozygous deletion of the Nos2 gene. We revealed that CVN mice made more first-time errors and received more correction trials than WT mice across both discrimination and reversal phases, although mutation effect size was larger during the latter phase. These results indicate sensitivity of touchscreen-based measurements to AD-relevant mutations in CVN mice and warrant future touchscreen experiments aimed at evaluating other cognitive and motivational phenotypes in this AD mouse model.
منابع مشابه
mNos2 Deletion and Human NOS2 Replacement in Alzheimer Disease Models
Understanding the pathophysiologic mechanisms underlying Alzheimer disease relies on knowledge of disease onset and the sequence of development of brain pathologies. We present a comprehensive analysis of early and progressive changes in a mouse model that demonstrates a full spectrum of characteristic Alzheimer disease-like pathologies. This model demonstrates an altered immune redox state rem...
متن کاملProgression of amyloid pathology to Alzheimer's disease pathology in an amyloid precursor protein transgenic mouse model by removal of nitric oxide synthase 2.
Alzheimer's disease (AD) is characterized by three primary pathologies in the brain: amyloid plaques, neurofibrillary tangles, and neuron loss. Mouse models have been useful for studying components of AD but are limited in their ability to fully recapitulate all pathologies. We crossed the APPSwDI transgenic mouse, which develops amyloid beta (Abeta)-protein deposits only, with a nitric oxide s...
متن کاملOral Triphenylmethane Food Dye Analog, Brilliant Blue G, Prevents Neuronal Loss in APPSwDI/NOS2-/- Mouse Model
Reducing amyloid-β (Aβ) accumulation is a promising strategy for developing Alzheimer's Disease (AD) therapeutics. We recently reported that a triphenylmethane food dye analog, Brilliant Blue G (BBG), is a dose-dependent modulator of in vitro amyloid-β aggregation and cytotoxicity in cell-based assays. Following up on this recent work, we sought to further evaluate this novel modulator in a the...
متن کاملLithium Treatment of APPSwDI/NOS2−/− Mice Leads to Reduced Hyperphosphorylated Tau, Increased Amyloid Deposition and Altered Inflammatory Phenotype
Lithium is an anti-psychotic that has been shown to prevent the hyperphosphorylation of tau protein through the inhibition of glycogen-synthase kinase 3-beta (GSK3β). We recently developed a mouse model that progresses from amyloid pathology to tau pathology and neurodegeneration due to the genetic deletion of NOS2 in an APP transgenic mouse; the APPSwDI/NOS2-/- mouse. Because this mouse develo...
متن کاملImpaired discrimination learning in mice lacking the NMDA receptor NR2A subunit.
N-Methyl-D-aspartate receptors (NMDARs) mediate certain forms of synaptic plasticity and learning. We used a touchscreen system to assess NR2A subunit knockout mice (KO) for (1) pairwise visual discrimination and reversal learning and (2) acquisition and extinction of an instrumental response requiring no pairwise discrimination. NR2A KO mice exhibited significantly retarded discrimination lear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience Letters
دوره 650 شماره
صفحات -
تاریخ انتشار 2017